1. A ball is thrown vertically upward from a cliff 320 feet tall with an initial velocity of 96 feet per second. It's position at any time t is given by $s(t)=-16 t^{2}+96 t+320$. Find the maximum height the ball reaches.
2. A ball is thrown vertically downward from a balcony 100 feet high with an initial velocity of 50 feet per second. It's position at time t is given by $s(t)=-16 t^{2}-50 t+100$. What is the velocity of the ball when it hits the ground?
3. The position of a particle moving along the x-axis is given by $x(t)=t^{3}-12 t^{2}+36 t-20, t \geq 0$. For what values of t is the particle moving to the left?
4. The position of a particle moving along the x-axis is given by $x(t)=2 t^{3}-10 t^{2}+t-50, t \geq 0$. For what values of t is the particle moving to the right?
5. Given $5 x^{2} y+y=x^{2}+3 y^{2}$, find $\frac{d y}{d x}$.
6. Given $6 x y+y^{3}=x^{2}+y$, find $\frac{d y}{d x}$.
7. Write an equation of a tangent to $2 x^{3}-x^{2} y=1-y^{3}$ at $(2,-3)$.
8. Write an equation of a tangent to $x y^{2}=27-3 y$ at $(2,3)$.
9. A 20 -foot ladder is leaning against a vertical wall. If the bottom of the ladder slides away from the wall at 2 feet per second, how fast is the top of the ladder moving down the wall when the top is 12 feet from the ground?
10. A light is at the top of a 16 -foot pole. A 5 -foot boy is walking away from the pole at 4 feet per second. At what rate is the length of his shadow increasing?
11. Linearize $f(x)=3 \cos x+\sin x$ at $x=0$.
12. Linearize $f(x)=\frac{2 x-1}{x+3}$ at an appropriate x-value to approximate $f(1.2)$. Use your linearization to estimate $f(1.2)$.
13. Given $x^{2} y=\sin (x y)$, find $\frac{d y}{d x}$.
14. Given $x y=\tan y$, find $\frac{d y}{d x}$.
15. Given $y^{2}=x \cos y$, find $\frac{d y}{d x}$.
16. Use an appropriate linearization to estimate $\sqrt{81.2}$.
17. Use an appropriate linearization to estimate $\sqrt[3]{8.3}$.

Answers (not complete solutions)

1. 464 feet
2. 94.340 feet per second down (-94.340)
3. $(2,6)$
4. $(0, .051) \cup(3.283, \infty)$
5. $\frac{d y}{d x}=\frac{2 x-10 x y}{5 x^{2}+1-6 y}$
6. $\frac{d y}{d x}=\frac{2 x-6 y}{6 x+3 y^{2}-1}$
7. $y+3=-\frac{36}{23}(x-2)$
8. $y-3=-\frac{3}{5}=(x-2)$
9. $\frac{8}{3}$ feet per second down $\left(-\frac{8}{3}\right)$
10. Length increasing at $\frac{20}{11}$ feet per second
11. $L(x)=3+x$
12. Linearize f at $x=1 . L(x)=\frac{1}{4}+\frac{7}{16}(x-1) \longrightarrow L(1.2)=.330$
13. $\frac{d y}{d x}=\frac{-2 x y+y \cos x y}{x^{2}-x \cos x y}$
14. $\frac{d y}{d x}=\frac{-y}{x-\sec ^{2} y}$
15. $\frac{d y}{d x}=\frac{\cos y}{2 y+x \sin y}$
16. Linearize $f(x)=\sqrt{x}$ at $x=81 . L(x)=9+\frac{1}{18}(x-81) \longrightarrow \sqrt{81.2} \approx L(81.2)=9.011$
17. Linearize $f(x)=\sqrt[3]{x}$ at $x=8 . L(x)=2+\frac{1}{12}(x-8) \longrightarrow \sqrt[3]{8.3} \approx L(8.3)=2.025$
